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Abstract

The authors present a method for representing N-
dimensional fuzzy membership functions.  The proposed
method is a generalization of the one-dimensional
trapezoidal membership function commonly used in fuzzy
systems.  The issue of correlation between input variables
and a decrease in the rule base size is the motivation for
extending the definition of membership functions into
more than one domain.  The approach outlined in this
paper is focused by practical considerations and use of a
Bayesian version of fuzzy logic which requires that set
membership sum to one.  The fuzzy partitioning which
stems from the presented method is parameterized by
M+1 values, yielding an efficient mechanism for
designing complex fuzzy systems.

Introduction

The current state of the art in fuzzy logic system
design is the use of fuzzy membership functions which
are defined in a single domain, i.e. functions of one
variable.  These fuzzy membership functions define the
degrees of membership that a crisp value has in a fuzzy
set.  In practice, the membership functions are also either
trapezoidal or triangular as in Figure 1.  For simple
applications this scheme is adequate, easy to design,
prototype and adjust.

However, the use of one-dimensional membership

functions has proved to be inadequate in practical
situations involving complex systems.  In particular,
previous work in the area of flight mode identification for
an “automated pilot advisor” has revealed this
inadequacy.  Lass [5] describes “as long and tedious” the
use of one-dimensional membership functions for
maintaining an airplane’s state within a particular
operating region.  He further concludes that fifty-two
rules would have been needed to describe one operating
mode on a two-dimensional state space.  Harral [4]
showed that in areas like flight mode identification the
real problem for one-dimensional membership functions
is the high amount of correlation between the measurable
inputs.

By “correlation” is meant the condition that an aircraft
operating mode, say, is represented by irregular, smoothly
connected region in a multivariable state-space.  The
"footprint" of a mode on the x-y plane could look
something like Figure 2.  One-dimensional membership
functions cannot by themselves represent such a
relationship.  The current practice approximates a smooth
representation by composition of two or more single-
variable regions.  Such a composition is shown in dashed
lines on Figure 2.  A better approximation would require
that each axis be partitioned into more one-dimensional
fuzzy sets.  However, with additional fuzzy sets come a
larger rule base.

The composition of single-variable fuzzy sets into
multivariable sets requires a rule base.  One-dimensional
fuzzy sets are defined on each input space.  The typical
rules might resemble "If x is HIGH and y is LOW then z
is SHORT".  These rules can define the system output or
an intermediary set used for multilevel rule-bases.  The
accuracy of the approximation depends on the number of
fuzzy sets defined on each input, and the particular
connectives used.
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Figure 1.  Typical 1D membership functions.
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For systems with correlation between two variables, x
and y, the one-dimensional membership functions

describing a set A are of the form µA x y Y( )=  and

µA y x X( )= .  Correlation of membership can also be

approximated by designing conditional membership
functions.  This is a brute force method of specifying
µA kx y Y( | )=  for k=1,2,…K.  This requires K one-

dimensional fuzzy set definitions for each set or mode.

In the case that Y y Y Yj j< = < +
*

1 , an interpolation

must be done to approximate µA x y Y( )*= . This

method has been successful [5] but lacks efficiency and is
arduous to tune.

Our scheme is a utilitarian multidimensional
representation.

The “Sum To One” Design Criteria

Our present work in knowledge-based control [6]
admits the alternate fuzzy logic connectives, originally
compared by Bellman and Zadeh [1].  These are the usual
connectives of the Bayes version of fuzzy logic [7],
wherein the membership values sum to unity.  That is, for
membership functions µ i x( ) ,

µ i
i

x x( ) = ∀∑ 1;   (1)

Membership functions defined in such a manner are
referred to as a fuzzy partitioning.

Fuzzy membership functions based on Gaussian
probability density functions can easily be extended to N-
dimensions.  Multidimensional Gaussian membership
functions have proved especially useful in the area of
clustering [1] and training [8].  However, membership
functions based on Gaussian densities generally do not
exhibit the desirable property of equation (1).
Trapezoidal membership functions, on the other hand,
can easily be defined with the design constraint of
equation (1).

Hypertrapezoidal Fuzzy Membership
Functions

The standard method for defining one-dimensional
trapezoidal membership functions is with four points -- a,
b, c, and d, as shown in Figure 3.  This method, however,
is impracticable for defining membership functions on
multiple dimensions.  Therefore, we propose the
hypertrapezoidal membership function as a utilitarian
scheme for defining multidimensional membership
function.
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{(x, y) : µ(x, y)>0}

Two variable composition
(i.e. IF Si and Sj, THEN …)

"Correlated" model

Si(x)

Sj(y)

Figure 2.  Footprint of fuzzy set when the input variables are correlated.
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Figure 3.  Defining an one-dimensional
trapezoidal membership function.
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The complete trigonometric derivation of
hypertrapezoidal membership functions is straight-
forward and is not shown here due to space constraints.
The derivation consists of four steps:  the definition of the
prototype points and a “crispness factor”, the definition of
a relative distance measure, the calculation of a
conditional membership function, and the final
composition.

Hypertrapezoidal membership functions are defined by
prototype points and a crispness factor.  In a fuzzy
partitioning of an N-dimensional space, let each fuzzy
set, Si, be defined by a prototype point, λ i .  Furthermore,

let the partitioning of the space also be parameterized by
a crispness factor, σ .  The prototype point, λ i , has a

degree of membership in set, Si, of µ λi i( ) = 1  and a

degree of membership in set Sj, of µ λj i( ) = 0  where j≠i.

The crispness factor, 0 1≤ ≤σ , determines how much
ambiguity exists between the sets of the partitioning.  For
σ = 1 , no fuzziness exists between the sets and the
partitioning is equivalent to a minimum distance
classifier.  For fuzzy sets, σ < 1 .  One way to define the
crispness factor is using Figure 4 and equation (2).

σ α= 2

d
(2)

The crispness factor establishes how much of the space
between the prototype points is fuzzy.  The prototype
points are chosen as ideal representatives of each fuzzy
set.  Then, the designer’s selection of σ specifies the ratio
of α and d .  See Figure 5 for one-dimensional examples.

The second step in the derivation is the definition of
an appropriate distance measure relating the distance
from the crisp input to two prototype points.  This
distance measure is a ratio of the distance between two
prototype points, and the difference in the distances from
the crisp input to the two prototype points.  For fuzzy sets

Si and Sj, with prototype points λ i  and λ j , and a crisp

input Λ , that distance measure is

ρ i j

i j

ij

v v

v
( )Λ =

−v v

v

2 2

2
, (3)

where 
v

vij  is a vector from λ i  to λ j ; 
v

vi is a vector from

λ i  to Λ ; and 
v

v j  is a vector from λ j  to Λ .  This

distance measure is used to determine if the crisp input
Λ  lies completely in fuzzy set i, or completely in fuzzy
set j, or in the fuzzy region between the two sets.

The third step in the derivation of hypertrapezoidal
membership functions is determining the degree of
membership that Λ  has in set i, given that set j is the
only other set in the partition.  Suppose fuzzy sets i and j
are the only two sets defined in an N-dimensional space.
Using the distance measure of equation (3), that degree of
membership is
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For the first case in equation (4), Λ  lies completely in
fuzzy set j.  For the second case, Λ  lies completely in
fuzzy set i.  The third case is the case of Λ  being in the
transition from set i to set j.
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Figure 4.  Defining the crispness of a partitioning.
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Generally, there will be more than two sets in an input
space.  Therefore, the final step in the derivation requires
combining the membership functions of equation (4) for
all j≠i.  In this case, the degree of membership of a point
Λ  in each of the M fuzzy sets can be calculated in one of
two ways.  The first is based on product/sum inference
and is shown in equation (5).  The second is based on
min/max inference and is shown in equation (6).  Both
are normalized so that equation (1) is satisfied.
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 for i = 1, 2, ...M (6)

To summarize, the design of hypertrapezoidal
membership functions requires two steps –

a) selection of the prototype points, and

b) selection of the crispness factor.

The computation of hypertrapezoidal membership
functions requires three sets of calculations –

a) the distance measure of equation (3),

b) the conditional membership functions of equation
(4), and

c) the composition of equation (5) or (6).

Notice that equations (3) - (6) are general for N
dimensions, including N=1.   These four equations allow
for the use of an N-dimensional membership functions
using only M+1 parameters.  Additionally, the desirable
property of equation (1) is enforced.

Examples

The following diagrams are examples of fuzzy

membership functions designed using the described
technique.  All the examples were made using equation
(6).  Figure 5 illustrates the use of the described technique
for one-dimensional membership functions and the effect
of the crispness factor σ  on fuzzy sets.

Figure 7 shows an example of three fuzzy sets defined
on two domains.  The definition of the three sets is
accomplished with the following parameters:
λ1 9 1= ( , ) , λ 2 5= ( , ) 5 , λ 3 1 9= ( , ) , and σ = 0 5. .

A rule base operating on one-dimensional sets could only
approximate the correlation represented in the figure.

In the example of Figure 7, a transformation of the
axes could also have compensated for the correlation. It is
included as a simple example to aid the reader in an
intuitive understanding of the design parameters λ i  and

σ .  Figure 6 shows another example of fuzzy sets
defined in a two-dimensional space.  In this case,
coordinate transformation would not be useful.

Visualization of N-dimensional fuzzy sets defined on
more than two domains is not easy.  However,
hypertrapezoidal membership functions do not require
visualization for their design.  The results of the
application of this technique for problems involving as
many as seven inputs will be reported in future
publications.
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Figure 5.  One dimensional examples,  for
λ = [ ]1 5 9 .
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Conclusion and Future Research

An efficient and simple mechanism for representing
and evaluating N-dimensional fuzzy membership
functions has been presented.  The examples show that
fuzzy partitioning of a space can be performed with a
small number of parameters.  This method of designing
N-dimensional membership functions has promise for
simplifying the design of complex fuzzy systems.
Multidimensional membership functions can account for
correlation between the input variables and reduce the
number of rules needed in a fuzzy system.

Another significant advantage of the presented
approach is in the areas of machine learning and adaptive
systems.  The small number of parameters needed for
hypertrapezoidal membership functions will be valuable

for situations requiring training.  Both clustering and
genetic algorithm techniques could be used to determine
good λ i s and σ  from training data.

Another important extension of the hypertrapezoidal
membership function is motivated by the work of Foster
and Khambhampati[3] in the area of multidimensional
Gaussian membership functions.  Instead of a single point
in space defining the center of a Gaussian membership
function, they used a vector in space to define the "top
ridge" of an elongated Gaussian fuzzy set.  This allows
for more variety in the shapes of the designed
membership functions.  For hypertrapezoids, this would

involve replacing the λ i s with vectors 
v

λ i .

Future work will also compare and contrast the use of
N-dimensional membership functions with one-
dimensional membership functions.  First, a classical
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Figure 6. Example of four sets defined on a two dimensional space.
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Figure 7.  Example of three sets defined on a two-dimensional space.
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fuzzy logic control problem (an inverted pendulum or
truck backer-upper) will be used for comparison.  Work is
also now underway to implement this new technique for
flight mode analysis in a pilot advisory system.  It is
believed that the real advantage of this technique will be
in complex systems like the pilot advisory system.
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